# $\mathrm{Bi}_{111} \mathrm{Sb}_{3 / 2}^{\mathrm{v}}\left(\mathrm{PO}_{4}\right)_{3}$ : A New Type of $\mathrm{M}_{2}\left(\mathrm{XO}_{4}\right)_{3}$ Framework Related to Garnet and Nasicon 

S. OYETOLA, A. VERBAERE, D. GUYOMARD, AND Y. PIFFARD*<br>Laboratoire de Chimie des Solides, UA 279, Université de Nantes, 2, Rue de la Houssinière, 44072 Nantes Cedex 03, France

Received March 31, 1988; in revised form June 20, 1988


#### Abstract

The single-phase compound $\mathrm{Bi}_{1 / 2}^{[1 /} \mathrm{Sb}_{3 / 2}^{V}\left(\mathrm{PO}_{4}\right)_{3}$ was prepared by solid-state reaction at 1173 K . It crystallizes in the rhombohedral system, space group $R \overline{3}$ with $a=17.034$ (2) $\AA, c=21.260(4) \AA, Z=24$. The structure was determined from 1487 reflections collected with a Nonius CAD4 diffractometer with Mo $K \bar{\alpha}$ radiation. The final $R$ index and weighted $R_{\mathrm{w}}$ index are 0.034 and 0.040 , respectively. This framework structure is built up from $\mathrm{PO}_{4}$ tetrahedra sharing their four corners with three $\mathrm{SbO}_{6}$ octahedra and one $\mathrm{BiO}_{6}$ octahedron. The $M \mathrm{O}_{6}$ octahedra $\left(\mathrm{SbO}_{6}\right.$ and $\left.\mathrm{BiO}_{6}\right)$ share all their corners with $\mathrm{PO}_{4}$ tetrahedra and they exhibit a nearly cubic-centered arrangement. This new type of $M_{2}\left(\mathrm{XO}_{4}\right)_{3}$ framework is compared to those of garnet, nasicon, and $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ in which the arrangement of octahedra is very similar. © 1988 Academic Press, Inc.


## Introduction

A number of oxides having the general compositional formula $A_{n} M_{2}\left(\mathrm{XO}_{4}\right)_{3}$ adopt crystal structures containing a framework of corner-linked $M \mathrm{O}_{6}$ octahedra and $\mathrm{XO}_{4}$ tetrahedra such that each oxygen atom is bonded to one $M$ atom and one $X$ atom; i.e., each $M \mathrm{O}_{6}$ tetrahedron is linked to four octahedra. The octahedra are then linked to each other via $\mathrm{O}-\mathrm{O}$ "bonds" which are edges of tetrahedra and have been called T bonds (I). Since each octahedron is connected to six tetrahedra via vertex-sharing, there are 18 such T-bonds between this octahedron and its neighboring octahedra. The manner in which they are distributed leads to various types of $M_{2}\left(\mathrm{XO}_{4}\right)_{3}$ frameworks (garnet (2), nasicon (3), langbeinite

[^0](4), $\left.\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}(5)\right)$ which are not simple distortions of each other. However, it has been shown recently (1) that garnet, nasicon, and $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ frameworks are closely related: they all exhibit a cubic or nearly cubic-centered arrangement of octahedra and there is one T-bond between a given octahedron and each of the six next nearest neighboring octahedra which are the six centers of the next nearest cubes (Fig. 1). They differ from each other, as indicated in Fig. 1, by the distribution of the 12 remaining T-bonds between an octahedron and its eight neighboring octahedra at the apices of the cube.

In the langbeinite framework the arrangement of octahedra is not pseudo-cubic-centered. However, nasicon, $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$, and langbeinite structure types can be described as built up from the same type of $M_{2} X_{3} \mathrm{O}_{18}$ units (two octahedra joined by three tetrahedra) (1).


Fig. 1. Perspective views of the cubic-centered arrangements of octahedral cations in (a) garnet, (b) $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$, (c) nasicon. Figures between brackets indicate the number of T-bonds between the "central" atom $X$ and its neighbors $(A, B, \ldots, N)$.

A number of $\mathrm{M}_{2}\left(\mathrm{XO}_{4}\right)_{3}$ frameworks are stable in the total absence of $A$ cations. They are either $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ or nasicon type but, to our knowledge, no example of the garnet framework without $A$ cation exists. In connection with that it must be mentioned that the structure of $\mathrm{Fe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}(6-$ 9) is very frequently considered to be a garnet structure with the $A$ sites unoccupied whereas it belongs to the $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ type. $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$-related compounds include molybdates and tungstates of $\mathrm{Al}^{3+}, \mathrm{Sc}^{3+}, \mathrm{Cr}^{3+}$, $\mathrm{Fe}^{3+}, \mathrm{In}^{3+}$, and the smaller rare-earth ions $L n^{3+}$ as well as the monoclinic form of ferric sulfate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(10-18)$ and the orthorhombic form of zirconium phosphatosulfate $\beta-\mathrm{Zr}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{SO}_{4}$ (I). Nasicon framework structures, with the $A$ sites unoccupied, are observed for the $M^{1 \mathrm{~V}} M^{\prime \mathrm{V}}\left(\mathrm{PO}_{4}\right)_{3}$ compounds ( $M=\mathrm{Ti}, \mathrm{Ge}$ and $M^{\prime}=\mathrm{Sb}, \mathrm{Nb}, \mathrm{Ta}$ ) (19) and in the rhombohedral form of ferric sulfate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(17$, 20). The rhombohedral form of zirconium phosphatosulfate, $\alpha-\mathrm{Zr}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{SO}_{4}$ is also assumed to be of this type (21).

Recently, we have shown (22) that chemical substitution at the Zr site of the $\mathrm{ZrP}_{2} \mathrm{O}_{7}$ structure by various cations gives rise to compounds corresponding to the compositional formula $M_{12}^{\prime \prime I I} M_{12}^{\prime} \mathrm{P}_{2} \mathrm{O}_{7}\left(M^{\prime}=\mathrm{Sb}\right.$, $\mathrm{Nb}, \mathrm{Ta}$ and $\left.M^{\prime \prime}=\mathrm{Sb}, \mathrm{Bi}, L n\right)$. In the same way, attempts have been undertaken to substitute the $M^{\text {IV }}$ cation in the $M^{1 \mathrm{~V}} M^{\prime \mathrm{V}}\left(\mathrm{PO}_{4}\right)_{3}$ phases mentioned above. We report here on the preparation and crystal structure determination of $\mathrm{Bi}_{11 / 2} \mathrm{Sb}_{3 / 2}^{\mathrm{v}}$ $\left(\mathrm{PO}_{4}\right)_{3}$ which, formally, could be considered as one such phase. This compound exhibits in fact a new structural type which is compared to the garnet, nasicon, and $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ frameworks.

## Experimental

Single crystals of $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ were prepared by heating, in a platinum crucible, stoichiometric proportions of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$,

TABLE I
$\mathrm{Bi}_{1 / 2}^{[1 / 2} \mathrm{Sb}_{3 / 2}^{\mathrm{v}}\left(\mathrm{PO}_{4}\right)_{3}$ : Unit Cell Constants

| Crystal symmetry | Trigonal |
| :--- | :--- |
| $a(\AA)$ | $17.034(2)$ |
| $c(\AA)$ | $21.260(4)$ |
| $V\left(\AA^{3}\right)$ | 5342.1 |
| $D_{\text {calc }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | 4.266 |
| $Z$ | 24 |
| Space group | $R \overline{3}$ |
| $\mu\left(\mathrm{~cm}^{-1}\right)$ for $\lambda K \bar{\alpha}=0.71069 \AA$ | 150.2 |

$\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{5} \cdot x \mathrm{H}_{2} \mathrm{O}$ at 473 K for 4 hr to decompose the $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ and at 1173 K for 24 hr to complete the reaction. The crystals obtained are colorless small hexagonal prisms. Single-crystal X-ray study in-
dicates that the compound is of rhombohedral symmetry. The cell parameters (Table 1) were refined by a least-squares procedure from powder diffraction data collected with a Guinier camera (Guinier Nonius FR552, quartz crystal monochromator, $\mathrm{Cu} K \alpha_{1}=$ $1.54056 \AA, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ as standard). The powder pattern (Table II) includes observed and calculated interplanar distances of the reflection planes along with the intensities calculated from the Lazy Pulverix program (23). Intensity data were collected with a Nonius CAD4 diffractometer operating under the conditions given in Table III. For the data reduction, structure solution, and refinement, the SDP-PLUS program chain (1982 version) of Enraf-Nonius, written by Frenz (24), was used.

TABLE II
$\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}^{\mathrm{v}}\left(\mathrm{PO}_{4}\right)_{3}$ : X-Ray Powder Diffraction Data
$\left.\begin{array}{lllrlllr}\hline h k l & d_{\text {obs }}(\AA) & d_{\text {calc }}(\AA) & I / I_{0} & h k l & d_{\text {obs }}(\AA) & d_{\text {calc }}(\AA) & I / I_{0} \\ \hline 113 & 5.467 & 5.447 & 10 & 229 & 2.066 & 2.066 & 2 \\ 211 & 5.404 & 5.393 & 11 & 0210 & 2.043 & 2.043 & 3 \\ 024 & 4.316 & 4.312 & 100 & 066 & 2.020 & 2.020 & 2 \\ 220 & 4.259 & 4.258 & 95 & 262 & 2.008 & 2.009 & 4 \\ 312 & 3.818 & 3.818 & 5 & 428 & 1.924 & 1.924 & 19 \\ 223 & 3.651 & 3.650 & 16 & 624 & 1.908 & 1.909 & 22 \\ 042 & 3.482 & 3.484 & 5 & 437 & 1.894 & 1.895 & 3 \\ 1225 & 3.383 & 3.381 & 4 & 075 \\ 3 & 21 & 3.340 & 3.342 & 5 & 535 \\ 1 & 16 & 3.273 & 3.271 & 2 & 1310\end{array}\right\}$

TABLE III
Data Collection and Refinement Conditions

| Data collection |  |
| :---: | :---: |
| Equipement | Nonius CAD4 diffractometer |
| Radiation ( $\AA$ ) | $\mathrm{MoK} \bar{\alpha}_{\bar{\alpha}} \lambda=0.71069$ |
| Scan mode | $\omega-2 \theta$ |
| Scan angle ( ${ }^{\circ}$ ) | $\Delta \omega=1.0+0.35 \tan \theta$ |
| Recording angular range ( $\theta^{\circ}$ ) | 1.5-35.0 |
| Number of independent data observed with $\sigma(I) / I<0.3$ (used in refinements) | 1487 |
| Refinements |  |
| Number of variables (isotropic temperature factors) | 93 |
| $R=\Sigma\left(\| \| F_{0}\left\|-\left\|F_{\mathrm{c}}\right\| \text { \| } / \Sigma\right\|_{\text {o }} \mid\right.$ | 0.038 |
| $\begin{aligned} & R_{\mathrm{w}}=\left[\Sigma \omega\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2 / \Sigma \omega} \boldsymbol{F}_{\mathrm{o}}^{2}\right]^{1 / 2} \\ & \text { with } w=1 /\left(1+\left[\left(F_{\mathrm{o}}-F_{\mathrm{av}}\right) /\right.\right. \end{aligned}$ | 0.045 |
| $F_{\text {max }}{ }^{\text {l }}$ ] ${ }^{\text {a }}$ |  |
| Number of variables (anisotropic temperature factors for $\mathrm{Bi}, \mathrm{Sb}$, and $P$ atoms) | 131 |
| $R=$ | 0.034 |
| $\boldsymbol{R}_{\boldsymbol{w}}=$ | 0.040 |
| Extinction parameter refined $g=$ | $1.4(2) \times 10^{-8}$ |

Refinement was carried out by the fullmatrix least-squares method. The positional parameters of the bismuth and antimony atoms were determined from the three-dimensional Patterson map. Those of the phosphorus and oxygen atoms were then inferred from Fourier syntheses. In the final stage of refinement $\mathrm{Bi}, \mathrm{Sb}$, and P atoms were refined anisotropically. Refinement converged with $R=0.034$ and $R_{w}=$ 0.040 . The final Fourier-difference map is


Fig. 2. Projection of the $M$ cations ( Bi and Sb ) on the (001) plane showing the two types of files: (A) type I, ( ${ }^{(0)}$ ) type II.
featureless with maxima and minima in the range $\pm 0.6 \mathrm{e} / \AA^{3}$. Details of the different stages of refinement are given in Table III. Table IV presents the final atomic coordinates and thermal parameters (structure factor table will be sent upon request).

## Description of the Structure and Discussion

The structure of $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ is a new type of $\mathrm{M}_{2}\left(\mathrm{XO}_{4}\right)_{3}$ framework built up from $M \mathrm{O}_{6}$ octahedra $\left(\mathrm{BiO}_{6}\right.$ and $\left.\mathrm{SbO}_{6}\right)$ sharing all their corners with $\mathrm{XO}_{4}$ tetrahedra, and $X \mathrm{O}_{4}$ tetrahedra $\left(\mathrm{PO}_{4}\right)$ sharing all their corners with octahedra.

The $M$ cations are located on two types of files running parallel to the $c$ axis. In the first one they coincide with the threefold axes and in the second they go through the center of the hexagonal cell or cquivalent sites (Fig. 2) so that there are three times as much files of type II as files of type I. If, then, the description includes the $\mathrm{PO}_{4}$ tetrahedra around each $M$ cation, the structure can be considered as a three-dimensional arrangement of two types of chains, parallel to the $c$ axis. Such chains are represented on two figures. In Fig. 3, they have been artificially separated from each other in order to show more clearly the linkage between the $M \mathrm{O}_{6}$ octahedra along each type of chain. The same chains, linked together to give an actual fragment of the structure, are shown in Fig. 4.

In this structure, the arrangement of the $M$ cations and then of the $M \mathrm{O}_{6}$ octahedra is pseudo-cubic-centered (Fig. 5). Therefore, $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ can be compared to the other $\mathrm{M}_{2}\left(\mathrm{XO}_{4}\right)_{3}$ frameworks exhibiting the same feature: garnet, nasicon, and $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$. In each of these three frameworks there is only one type of elementary cube or pseudo-cube (1) whereas there are six different ones in $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ (Fig. 5). They are centered on the six independent positions (Table IV) occupied by the $M$ cat-

TABLE IV
Fractional Atomic Coordinates and Thermal Parameters

| Atom | $x$ |  | $y$ |  | $z$ | $B\left(\AA^{2}\right)^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bi(1) | 0.0 |  | 0.0 |  | 0.0079(1) | 1.09(3) |
| Bi(2) | 0.5 |  | 0.0 |  | 0.0 | 0.83(1) |
| Sb (1) | 0.0 |  | 0.0 |  | 0.5 | 0.33(2) |
| $\mathrm{Sb}(2)$ | 0.0 |  | 0.0 |  | 0.28181(8) | 0.32(2) |
| Sb(3) | 0.5 |  | 0.0 |  | 0.5 | 0.39(2) |
| $\mathrm{Sb}(4)$ | 0.50980(6) |  | 0.02409(5) |  | 0.23722(5) | 0.31(1) |
| $\mathrm{P}(1)$ | 0.3403(2) |  | 0.0393(2) |  | 0.7899(2) | $0.37(6)$ |
| $\mathrm{P}(2)$ | 0.0247(2) |  | 0.1783(2) |  | 0.2063(2) | 0.57(6) |
| $\mathbf{P}$ (3) | 0.1479(3) |  | 0.1226 (3) |  | 0.3892(2) | 0.78(7) |
| $\mathbf{P}(4)$ | $0.0554(3)$ |  | 0.2254 (3) |  | 0.9580(2) | 0.94(7) |
| $\mathrm{O}(1)$ | 0.1093(8) |  | 0.0579(8) |  | 0.3329(6) | 1.2(2)* |
| $\mathrm{O}(2)$ | 0.0956(8) |  | 0.3693(8) |  | $0.1306(6)$ | 1.5(2)* |
| O(3) | 0.2020(9) |  | 0.4683(9) |  | 0.2796 (7) | 1.8(2)* |
| $\mathrm{O}(4)$ | 0.2620 (8) |  | 0.4075(8) |  | 0.6404(6) | 1.3(2)* |
| $\mathrm{O}(5)$ | 0.0438(8) |  | 0.1098(8) |  | 0.5503(6) | 1.2(2)* |
| $\mathrm{O}(6)$ | $0.0465(7)$ |  | $0.1051(7)$ |  | 0.2283(6) | 1.1(2)* |
| O(7) | 0.0246 (8) |  | 0.4546(8) |  | $0.1632(6)$ | 1.2(2)* |
| $\mathrm{O}(8)$ | 0.2356 (9) |  | 0.4164(9) |  | 0.0503(7) | 1.9(2)* |
| O(9) | 0.2983(7) |  | 0.1602(7) |  | 0.0799(6) | 1.1(2)* |
| $\mathrm{O}(10)$ | 0.2549(7) |  | 0.1964 (7) |  | 0.7493(6) | 1.1(2)* |
| O(11) | 0.2594(9) |  | $0.4657(9)$ |  | 0.5248(7) | 2.0(2)* |
| $\mathrm{O}(12)$ | 0.3071(8) |  | $0.2627(8)$ |  | 0.1793(7) | 1.6(2)* |
| $\mathrm{O}(13)$ | 0.2098(8) |  | 0.0781(8) |  | 0.1932(6) | 1.5(2)* |
| O(14) | 0.2280(8) |  | 0.2585(8) |  | 0.0627(6) | 1.4(2)* |
| $\mathrm{O}(15)$ | 0.3219(8) |  | 0.0487(9) |  | $0.7242(7)$ | 1.6(2)* |
| O(16) | 0.1342(8) |  | 0.0899(8) |  | 0.0517(6) | 1.4(2)* |
| Atom | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| Bi(1) | 0.00061(3) | $\beta_{11}$ | 0.00122(6) | $\beta_{11}$ | 0 | 0 |
| Bi(2) | $0.00068(2)$ | 0.00102(2) | 0.00047 (1) | $0.00061(3)$ | 0.00033(5) | -0.00013(4) |
| Sb(1) | $0.00048(5)$ | $\beta_{11}$ | $0.00009(4)$ | $\beta_{11}$ | 0 | 0 |
| Sb (2) | $0.00033(3)$ | $\beta_{11}$ | $0.00022(3)$ | $\beta_{11}$ | 0 | 0 |
| Sb (3) | $0.00033(3)$ | 0.00044 (3) | 0.00031(2) | 0.00049(5) | 0.00024(8) | $0.00065(6)$ |
| $\mathrm{Sb}(4)$ | $0.00018(2)$ | $0.00026(2)$ | 0.00027 (1) | $0.00013(4)$ | -0.0005(5) | $0.00008(3)$ |
| $\mathrm{P}(1)$ | 0.00046(9) | 0.00022(9) | $0.00034(7)$ | $0.0005(1)$ | $0.0000(1)$ | -0.0002(1) |
| P (2) | 0.0005(1) | 0.0005(1) | $0.00042(7)$ | 0.0004(1) | -0.0004(2) | -0.0001(2) |
| P(3) | $0.0005(1)$ | $0.0012(1)$ | 0.00041 (7) | 0.0006(2) | -0.0002(2) | $0.0002(2)$ |
| $\mathrm{P}(4)$ | 0.0005(1) | 0.0021(1) | 0.00026 (7) | 0.0012(2) | 0.0000(2) | 0.0004(2) |

[^1]ions ( $\mathrm{Bi}(1), \mathrm{Bi}(2)$, and $\mathrm{Sb}(1)$ to $\mathrm{Sb}(4))$. In each of the six pseudo-cubes the central octahedron is connected to each of the next nearest neighboring octahedra (which are the six centers of the next nearest cubes)
via one T-bond. Therefore, the comparison of the six pseudo-cubes between themselves and with the elementary cubes or pseudo-cubes in garnet, nasicon, and $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ structures amounts to the distri-


Fig. 3. [120] view of the chains (see text) artificially separated from each other.
bution of 12 T-bonds between an octahedron and its eight neighboring octahedra at the apices of the cube. In order to describe


Fig. 4. [120] view of a fragment of the structure corresponding to the chains represented in Fig. 3.
the different possible distributions, one can consider first that the number of T-bonds between a given octahedron and one of its eight neighboring octahedra can vary from 0 to 3 and then that there are $k, l, m$, and $n$ such neighbors which are linked to the central octahedron by $0,1,2$, and 3 T-bonds, respectively. A distribution can therefore be written ( $k l m n$ ) with:
$k+l+m+n=8$ (number of neighbors)
$l+2 m+3 n=12$ (number of T-bonds).
According to this way of writing distributions, those which have been evidenced in garnet, $\mathrm{Sc}_{2}\left(\mathrm{WO}_{4}\right)_{3}$, and nasicon are (2060), (0521), and (1331), respectively (see Fig. 1). In $\mathrm{Bi}_{12} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ the distributions which are observed around the six nonequivalent $\mathrm{MO}_{6}$ octahedra are the following (see Fig. 6):


Fig. S. Perspective view showing the pseudo-cubiccentered arrangement of the Bi and Sb atoms (each apex of the pseudo-cubes corresponds either to a Bi or a Sb atom).


Fig. 6. Perspective views of the pseudo-cubic-centered arrangements of octahedral cations in $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$. Figures between parentheses indicate the number of T-bonds between the central octahedron and its eight neighboring octahedra (as in Fig. 1).

$$
\begin{aligned}
& \mathrm{Bi}(1) \mathrm{O}_{6} \rightarrow(2060) \\
& \mathrm{Bi}(2) \mathrm{O}_{6} \rightarrow(0440) \\
& \mathrm{Sb}(1) \mathrm{O}_{6} \rightarrow(0602) \\
& \mathrm{Sb}(2) \mathrm{O}_{6} \rightarrow(1331) \\
& \mathrm{Sb}(3) \mathrm{O}_{6} \rightarrow(0440) \\
& \mathrm{Sb}(4) \mathrm{O}_{6} \rightarrow(0440)
\end{aligned}
$$

The pseudo-cubes centered on $\operatorname{Bi}(1)$ and $\mathrm{Sb}(2)$ are similar to those observed, respectively, in garnet and nasicon. The four others have never been encountered be-
fore. Three of them (around $\mathrm{Bi}(2), \mathrm{Sb}(3)$, and $\mathrm{Sb}(4)$ ) exhibit the same ( 0440 ) distribution. However, only those around $\operatorname{Bi}(2)$ and $\mathrm{Sb}(3)$ are strictly identical in terms of relative positions of octahedra linked by 1 and 2 T-bonds (see Fig. 6).
$\mathrm{Bi}(1) \mathrm{O}_{6}$ and $\mathrm{Sb}(2) \mathrm{O}_{6}$ octahedra are not linked by T-bonds and the 6 c site $(0,0, z$ with $z \simeq 0.13$ ) located halfway between $\mathrm{Bi}(1)$ and $\mathrm{Sb}(2)$ is about $2.6 \AA$ from the nearest oxygen atoms (Figs. 5 and 6). This site is nearly the same as that of Na in $\mathrm{NaZr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (3).

For $\mathrm{Bi}_{12} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ a list of bond distances along with their standard deviations is given in Table V. It can be seen from this table that all distances are reasonable and in good agreement with previous knowledge of bismuth (III), antimony (V), and phosphate structural chemistry. Within the $\mathrm{Bi}(1) \mathrm{O}_{6}$ octahedra $\mathrm{Bi}(1)$ occupies statistically (at $50 \%$ ) an off-centered 6 c position very close to a $\overline{3}$ site. This situation leads to
two groups of three $\mathrm{Bi}(1)-\mathrm{O}(16)$ distances instead of six equal ones and accounts for the stereochemical activity of the $\mathrm{Bi}^{111} 6 s^{2}$ lone pair. This activity is less sensible for $\mathrm{Bi}(2)$ which occupies an inversion center. The $\mathrm{SbO}_{6}$ octahedra are rather regular. The most distorted one is $\mathrm{Sb}(4) \mathrm{O}_{6}$ with $\mathrm{Sb}(4)-\mathrm{O}$ distances ranging from $1.906(6)$ to $1.970(5)$ $\AA$ and $\mathrm{O}-\mathrm{Sb}(4)-\mathrm{O}$ angles from 85.1 to $94.6^{\circ}$. Each $\mathrm{PO}_{4}$ tetrahedron is connected to three

TABLE V
Bond Distances ( $\AA$ ) for the Coordination Polyhedra

| $\mathrm{Bi}(1) \mathrm{O}_{6}$ octahedron |  |  | $\mathrm{Bi}(2) \mathrm{O}_{6}$ octahedron |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \mathrm{Bi}(1)-\mathrm{O}(16) \\ -\mathrm{O}(16) \end{array}$ | $(3 \times$ ) | 2.222(6) | $\mathrm{Bi}(2)-\mathrm{O}(3)$ | (2x) | 2.360(6) |
|  | (3x) | 2.382(6) | -O(10) | (2x) | $2.410(5)$ |
|  |  |  | -O(15) | (2x) | $2.276(5)$ |
| $\begin{aligned} & O(16)-O(16) \\ & O(16)-O(16) \end{aligned}$ | (6x) | 3.494(8) |  |  |  |
|  | (6×) | 2.984(9) | $\mathrm{O}(3)-\mathrm{O}(10)$ | (2x) | 3.269(7) |
|  |  |  | -O(10) | (2x) | 3.474(8) |
|  |  |  | -O(15) | (2x) | $3.275(7)$ |
|  |  |  | -O(15) | (2x) | $3.283(8)$ |
|  |  |  | $\mathrm{O}(10)-\mathrm{O}(15)$ | (2x) | $3.285(7)$ |
|  |  |  | -O(15) | (2x) | 3.344(8) |
| $\mathrm{Sb}(1) \mathrm{O}_{6}$ octahedron |  |  | $\mathrm{Sb}(2) \mathrm{O}_{6}$ octahedron |  |  |
| $\mathrm{Sb}(1)-\mathrm{O}(5)$ | (6x) | 1.951(5) | $\mathbf{S b}(2)-\mathbf{O}(1)$ | (3x) | 1.945(5) |
|  |  |  | -O(6) | (3x) | 1.926(5) |
| $\begin{array}{r} O(5)-O(5) \\ -O(5) \end{array}$ | (6x) | 2.825(8) |  |  |  |
|  | (6x) | 2.691(8) | $\mathrm{O}(1)-\mathrm{O}(1)$ | (3x) | 2.794(9) |
|  |  |  | -O(6) | (3x) | 2.757(7) |
|  |  |  | -O(6) | (3x) | 2.706(7) |
|  |  |  | $\mathrm{O}(6)-\mathrm{O}(6)$ | (3x) | 2.691 (8) |
| $\mathrm{Sb}(3) \mathrm{O}_{6}$ octahedron |  |  | $\mathrm{Sb}(4) \mathrm{O}_{6}$ octahedron |  |  |
| $\mathrm{Sb}(3)-\mathrm{O}(9)$ | (2x) | 1.926(4) | $\mathrm{Sb}(4)-\mathrm{O}(2)$ |  | 1.934(6) |
| -O(12) | (2x) | 1.918(5) | -O(4) |  | 1.953(5) |
| -O(13) | (2x) | $1.962(5)$ | -O(7) |  | 1.970(5) |
|  |  |  | -O(8) |  | 1.906 (6) |
| $\bigcirc(9)-O(12)$ | (2x) | 2.697(7) | -O(11) |  | 1.933(6) |
| -O(12) | (2x) | 2.738(7) | -O(14) |  | 1.942(5) |
| -O(13) | (2x) | 2.816(7) |  |  |  |
| -O(13) | (2x) | 2.681(7) | $\mathrm{O}(2)-\mathrm{O}(4)$ |  | 2.800(7) |
| $\begin{array}{r} O(12)-O(13) \\ -O(13) \end{array}$ | (2x) | 2.741(7) | -O(7) |  | 2.641(7) |
|  | (2x) | 2.746(7) | -O(8) |  | 2.709(7) |
|  |  |  | -O(11) |  | 2.711(8) |
|  |  |  | $\mathrm{O}(4)-\mathrm{O}(8)$ |  | $2.788(8)$ |
|  |  |  | -O(11) |  | 2.659(7) |
|  |  |  | -O(14) |  | 2.784(7) |
|  |  |  | O(7) -O(8) |  | $2.738(7)$ |
|  |  |  | -O(11) |  | 2.789(8) |
|  |  |  | -O(14) |  | 2.804(7) |
|  |  |  | $O(8)-O(14)$ |  | $2.641(7)$ |
|  |  |  | $\mathrm{O}(11)-\mathrm{O}(14)$ |  | 2.849(7) |

TABLE V-Continued

| $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron |  | $\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron |  |
| :--- | :---: | :---: | :---: |
| $\mathrm{P}(1)$-O(2) | $1.547(6)$ | $\mathrm{P}(2)-\mathrm{O}(6)$ | $1.541(5)$ |
| $-\mathrm{O}(7)$ | $1.532(5)$ | $-\mathrm{O}(10)$ | $1.475(5)$ |
| $-\mathrm{O}(12)$ | $1.525(5)$ | $-\mathrm{O}(11)$ | $1.550(6)$ |
| $-\mathrm{O}(15)$ | $1.457(6)$ | $-\mathrm{O}(13)$ | $1.544(5)$ |
| $\mathrm{O}(2)-\mathrm{O}(7)$ | $2.412(7)$ | $\mathrm{O}(6)-\mathrm{O}(10)$ | $2.502(7)$ |
| $-\mathrm{O}(12)$ | $2.502(8)$ | $-\mathrm{O}(11)$ | $2.345(7)$ |
| $-\mathrm{O}(15)$ | $2.487(7)$ | $-\mathrm{O}(13)$ | $2.495(7)$ |
| $\mathrm{O}(7)-\mathrm{O}(12)$ | $2.461(7)$ | $\mathrm{O}(10)-\mathrm{O}(11)$ | $2.552(7)$ |
| $-\mathrm{O}(15)$ | $2.489(7)$ | $-\mathrm{O}(13)$ | $2.535(7)$ |
| $\mathrm{O}(12)-\mathrm{O}(15)$ | $2.479(7)$ | $\mathrm{O}(11)-\mathrm{O}(13)$ | $2.496(8)$ |
| $\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron |  | $\mathrm{P}(4) \mathrm{O}_{4}$ tetrahedron |  |
| $\mathrm{P}(3)-\mathrm{O}(1)$ | $1.535(5)$ | $\mathrm{P}(4)-\mathrm{O}(4)$ | $1.535(5)$ |
| $-\mathrm{O}(3)$ | $1.453(6)$ | $-\mathrm{O}(9)$ | $1.558(5)$ |
| $-\mathrm{O}(5)$ | $1.542(5)$ | $-\mathrm{O}(14)$ | $1.548(5)$ |
| $-\mathrm{O}(8)$ | $1.556(6)$ | $-\mathrm{O}(16)$ | $1.483(6)$ |
| $\mathrm{O}(1)-\mathrm{O}(3)$ | $2.508(7)$ | $\mathrm{O}(4)-\mathrm{O}(9)$ | $2.466(7)$ |
| $-\mathrm{O}(5)$ | $2.488(7)$ | $-\mathrm{O}(14)$ | $2.439(7)$ |
| $-\mathrm{O}(8)$ | $2.379(7)$ | $-\mathrm{O}(16)$ | $2.552(7)$ |
| $\mathrm{O}(3)-\mathrm{O}(5)$ | $2.482(7)$ | $\mathrm{O}(9)-\mathrm{O}(14)$ | $2.524(7)$ |
| $-\mathrm{O}(8)$ | $2.509(8)$ | $-\mathrm{O}(16)$ | $2.503(7)$ |
| $\mathrm{O}(5)-\mathrm{O}(8)$ | $2.518(7)$ | $\mathrm{O}(14)-\mathrm{O}(16)$ | $2.502(7)$ |

$\mathrm{SbO}_{6}$ octahedra and one $\mathrm{BiO}_{6}$ octahedron. The three oxygen atoms bonded to antimony lead to $\mathrm{P}-\mathrm{O}$ distances ranging from $1.525(5)$ to $1.558(5) \AA$. The fourth, bonded to Bi , leads to a shorter $\mathrm{P}-\mathrm{O}$ distance (average value: $1.467 \AA$ for the four nonequivalent $\mathrm{PO}_{4}$ tetrahedra).

In $\mathrm{Bi}_{1 / 2} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ the shortest $\mathrm{Bi}-\mathrm{Bi}$ distance is $8.5 \AA$. This feature is of great interest since we have shown recently that it is possible to substitute Bi with Nd to get $\mathrm{Nd}_{x}$ $\mathrm{Bi}_{1 / 2-x} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ materials ( $0<x<1 / 2$ ). As a matter of fact it has been shown that the degree of concentration quenching in Nd laser materials is determined by the linkage between the $\mathrm{NdO}_{y}$ polyhedra (25), and especially by the $\mathrm{Nd}-\mathrm{Nd}$ distance. The luminescence properties of $\mathrm{Nd}_{x} M_{1 / 2-x}^{\mathrm{II}} \mathrm{Sb}_{3 / 2}\left(\mathrm{PO}_{4}\right)_{3}$ materials $(M=\mathrm{Bi}$, Sb ) are presently being investigated.

## References

1. Y. Piffard, A. Verbaere, and M. Kinoshita, J. Solid State Chem. 71, 121 (1987).
2. W. Prandl, Z. Kristallogr. 123, 81 (1966).
3. L. Hagman and P. Kirkegaard, Acta Chem. Scand. 22, 1822 (1968).
4. A. Zemann and J. Zemann, Acta Crystallogr. 10, 409 (1957).
5. S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 45, 2745 (1966).
6. L. M. Plyasova, R. F. Klevtsova, S. V. Borisov, and L. M. Kefeli, Sov. Phys. Dokl. (English Transl.) 11, 189 (1966).
7. L. M. Plyasova, S. V. Borisov, and N. V. Belov, Sov. Phys. Crystallogr. (English Transl.) 12, 25 (1967).
8. H.-Y. Chen, Mater. Res. Bull. 14, 1583 (1979).
9. M. H. Rapposch, J. B. Anderson, and E. Kostiner, Inorg. Chem. 19, 3531 (1980).
10. K. Nassau, H. J. Levinstein, and G. M. Loiacona, J. Phys. Chem. Solids 26, 1805 (1965).
11. D. C. Craig and N. C. Stephenson, Acta Crystallogr. Sect. B 24, 1250 (1968).
12. J. J. De Boer, Acta Crystallogr. Sect. B 30, 1878 (1974).
13. E. Ya. Rode, G. V. Lysanova, V. G. Kuznetsov, and L. Z. Gokhman, Russ. J. Inorg. Chem. 13, 678 (1968).
14. L. M. Plyasova, R. F. Klevtsova, S. V. Borisov, and L. M. Kefeli, Sov. Phys. Crystallogr. (English Transl.) 13, 29 (1968).
15. A. W. Sleight and L. H. Brixner, J. Solid State Chem. 7, 172 (1973).
16. L. H. Brixner, Rev. Chim. Miner. 10, 47 (1973).
17. P. A. Kokkoros, Mineral. Petrogr. Mitt. Osterr. 10, 45 (1965).
18. P. B. Moore and T. Araki, N. Jbuch. Miner. Abh. 121, 208 (1974).
19. R. Masse, A. Durif, J. C. Guitel, and I. Tordjman, Bull. Soc. Fr. Miner. Cristallogr. 95, 47 (1972).
20. R. Masse, J.-C. Guitel, and R. Perret, Bull. Soc. Fr. Miner. Cristallogr. 96, 346 (1973).
21. J. Alamo and R. Roy, J. Solid State Chem. 51, 270 (1984).
22. A. Verbaere, S. Oyetola, D. Guyomard, and Y. Piffard, I. Solid State Chem. 75, 217 (1988).
23. R. Yvon, W. Jeitschko, and E. Parthe, J. Appl. Crystallogr. 10, 73 (1977).
24. B. Frenz, "Enraf-Nonius Structure Determination Package," Delft Univ. Press, Delft (1982).
25. M. S. Hwang, H. Y.-P. Hong, M. C. Cheng, and Y. Wang, Acta Crystallogr. Sect. C 43, 1241 (1987).

[^0]:    * To whom correspondence should be addressed 0022-4596/88 \$3.00
    Copyright © 1988 by Academic Press, Inc.
    All rights of reproduction in any form reserved.

[^1]:    Note. The form of the anisotropic thermal parameter is: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\right.\right.$ $\left.\left.\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.
    ${ }^{a}$ Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $B_{e q}=4 / 3 \Sigma_{i} \Sigma_{j} \beta_{i j} \mathbf{a}_{i} \mathbf{a}_{j}$.

